Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894714

RESUMO

C. berlandieri ssp. berlandieri (C. berlandieri) is one of the most common members of the group of plants known as quelites, which are dark leafy greens widely consumed in Mexico. This study aimed to evaluate the impact of two drying procedures (oven drying and freeze-drying/lyophilization) on the polyphenolic composition, antioxidant capacity, and proximal chemical analysis of C. berlandieri leaves and inflorescences (raw or boiled). The results indicated that the raw freeze-dried samples had higher amounts (p < 0.05) of total phenolic compounds, total flavonoids, and antioxidant capacity, mainly in the inflorescence. The oven-dried samples showed an increased concentration of polyphenols after boiling, while the lyophilized samples showed a slightly decreased concentration. The drying process was observed to have little impact on the proximal chemical composition. Quantification by UPLC-DAD-ESI-QToF/MS identified up to 23 individual phenolic compounds, with freeze-dried samples showing higher amounts of individual compounds compared with oven-dried. Procyanidin B2 was found exclusively in the inflorescences. The inflorescences have a higher content of phenolic compounds and greater antioxidant capacity than the leaves. Regardless of the drying process, the leaves and inflorescences of C. berlandieri contain an interesting variety of phenolic compounds that may have beneficial effects on health.


Assuntos
Antioxidantes , Inflorescência , Antioxidantes/química , Inflorescência/química , Dessecação/métodos , Fenóis/química , Liofilização
2.
Plants (Basel) ; 12(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896032

RESUMO

Porophyllum ruderale (P. ruderale) is a well-known Mexican plant from the group of "Quelites", widely consumed plant species used for several food and medicinal purposes. As the production is very heterogeneous and the diverse agroclimatic conditions significantly impact the plant's phytochemical composition, this research aimed to compare the phenolic compound composition and the antioxidant capacity of the P. ruderale plant from three different collection sites (Queretaro, Landa de Matamoros, and Arroyo Seco) in the State of Queretaro (Mexico). Plants collected from Queretaro displayed the lowest total phenolic compounds, flavonoids, and condensed tannins, reflected in a lower antioxidant capacity (DPPH, FRAP, ABTS), compared to the other collection places. Flavones (epicatechin and epigallocatechin gallate) were the most abundant (36.1-195.2 µg equivalents/g) phenolics quantified by HPLC-DAD, while 31 compounds were identified by UHPLC-DAD-QToF/MS-ESI. Most compounds were linked to biological mechanisms related to the antioxidant properties of the leaves. A PCA analysis clustered Landa de Matamoros and Arroyo Seco into two groups based on flavones, hydroxybenzoic acids, the antioxidant capacity (ABTS and DPPH), and total phenolic compounds, the main contributors to its variation. The results indicated contrasting differences in the polyphenolic composition of collected P. ruderale in Queretaro, suggesting the need to standardize and select plants with favorable agroclimatic conditions to obtain desirable polyphenolic compositions while displaying potential health benefits.

3.
Plants (Basel) ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37653904

RESUMO

Cnidoscolus aconitifolius (CA) and Porophyllum ruderale (PR) are representative edible plants that are a traditional food source in Mexico. This research aimed to analyze the phytochemical composition and untargeted metabolomics analysis of CA and PR and evaluate their antiproliferative effect in vitro. The phytochemical composition (UPLC-DAD-QToF/MS-ESI) identified up to 38 polyphenols and selected organic acids that were clustered by the untargeted metabolomics in functional activities linked to indolizidines, pyridines, and organic acids. Compared with PR, CA displayed a higher reduction in the metabolic activity of human SW480 colon adenocarcinoma cells (LC50: 10.65 mg/mL), and both extracts increased the total apoptotic cells and arrested cell cycle at G0/G1 phase. PR increased mRNA Apc gene expression, whereas both extracts reduced mRNA Kras expression. Rutin/epigallocatechin gallate displayed the highest affinity to APC and K-RAS proteins in silico. Further research is needed to experiment on other cell lines. Results suggested that CA and PR are polyphenol-rich plant sources exhibiting antiproliferative effects in vitro.

4.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559649

RESUMO

Growing interest has recently been shown in Tepary beans (Phaseolus acutifolius) because they contain lectins and protease inhibitors that have been shown to have a specific cytotoxic effect on human cancer cells. Bean lectins offer protection against biotic and abiotic stress factors, so it is possible that mechanical foliar damage may increase lectin production. This study evaluates the effect of mechanical stress (foliar damage) on lectin and protease inhibitor content in Tepary beans. Seed yield was also analyzed, and phenolic content and antioxidant capacity (DPPH and TEAC) were determined in the leaves. An experimental design with random blocks of three treatments (T1: control group, T2: 50% mechanical foliar damage and T3: 80% mechanical foliar damage) was carried out. Mechanical foliar damage increased the amount of lectin binding units (LBUs) fivefold (from 1280 to 6542 LBUs in T3) but did not affect units of enzymatic activity (UEA) against trypsin (from 60.8 to 51 UEA in T3). Results show that controlled mechanical foliar damage could be used to induce overexpression of lectins in the seeds of Tepary beans. Mechanical foliar damage reduced seed production (-14.6%: from 1890 g to 1615 g in T3) and did not significantly increase phenolic compound levels in leaves.

5.
J Food Sci Technol ; 57(12): 4316-4336, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33087946

RESUMO

Pithecellobium dulce (Roxb) Benth (P. dulce), known as "guamúchil", is a tree native to the American continent. Various parts of the tree are used in traditional medicine, primarily for treating gastrointestinal disorders. The phenolic compounds and antioxidant capacity of this plant are largely responsible for the beneficial health effects attributed to it. A number of authors have studied the antioxidant capacity and phenolic compounds of the aril, seed, leaf and root of P. dulce using various methodologies, which can differ considerably in variables such as environmental factors, type of drying, temperature, the way the sample is stored, and the use of different solvents in the various extraction methods. Even methods of quantification by HPLC vary tremendously. This paper summarizes the existing research carried out to date on determining the phenolic profile and antioxidant capacity of P. dulce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...